Reversible SOC system development, operation and energy system (grid) integration

Closed

Programme Category

EU Competitive Programmes

Programme Name

EuroHPC JOINT UNDERTAKING

Programme Description

The EuroHPC Joint Undertaking (hereinafter “EuroHPC JU”), will contribute to the ambition of value creation in the Union with the overall mission to develop, deploy, extend and maintain in the Union an integrated world class supercomputing and quantum computing infrastructure and to develop and support a highly competitive and innovative High Performance Computing (HPC) ecosystem, extreme scale, power-efficient and highly resilient HPC and data technologies.

Programme Details

Identifier Code

HORIZON-JTI-CLEANH2-2022-04-03

Call

Reversible SOC system development, operation and energy system (grid) integration

Summary

The scope of this topic is to design and develop a reversible solid oxide system of at least 5 kWe in fuel cell mode and capable of absorbing at least 15 kWe in electrolysis mode. The solution developed should be validated in a relevant environment.

Detailed Call Description

Proposals should address the following at the system level:

  • A rSOC system capable of generating at least 5 kWe in fuel cell mode and capable of absorbing at least 15 kWe in electrolysis mode needs to be developed, in line with the KPIs mentioned in the expected outcomes;
  • The concepts used in developing the system should allow scalability to higher powers not only by adding individual stacks but also by increasing the stack power;
  • The system should be able to operate not only with 100% hydrogen as fuel but also with mixtures of hydrogen and natural gas in Fuel Cell mode. In Electrolysis mode the system should be able to operate either in steam electrolysis or co-electrolysis mode, depending on the best possible approach leading to compatibility with the gas grid; etc. (further details in the Funding&Tenders page)

Proposals should address the following at cell & stack level:

  • On the cell level, either commercially available cells may be used, or electro-catalytic materials can be specifically engineered keeping reversible operation in mind. The cells should perform up to the current standards or higher and should meet the KPIs given above. The same should be replicated on the short stack and full stack levels. The cell should be able to operate at a current density of at least 1.5 A/cm2 or higher in both modes of operation. Transient time during switching between modes should be quantified and kept low for practical operations;
  • Appropriate State of health monitoring methods and monitoring tools should be developed and implemented which can predict performance degradation when cell is operated the two modes EL (with steam electrolysis and/or co-electrolysis) and FC (with several combinations of feeding mixtures).

Proposals should also demonstrate how the solution developed would allow to create a synergy between the gas transmission system operator and electric transmission system operator. In addition proposals should develop and propose early business models targeting at energy companies including gas and power utilities.

Call Total Budget

€179,500,000

Thematic Categories

  • Energy
  • Research, Technological Development and Innovation

Eligibility for Participation

  • Large Enterprises
  • Private Bodies
  • Researchers/Research Centers/Institutions
  • State-owned Enterprises

Call Opening Date

31/03/2022

Call Closing Date

31/05/2022

EU Contact Point

EuroHPC JU

info@eurohpc-ju.europa.eu

(Publish Date: 07/04/2022-for internal use only)